
	

Continue

https://feedproxy.google.com/~r/Uplcv/~3/zMnd8XtcwSM/uplcv?utm_term=obb+file+downloader+app

Obb	file	downloader	app

Obb	file	download	app.

Discover	3	million	app	exciting	without	fee.	EASY.	Important:	from	August	2021,	the	new	apps	are	required	to	publish	with	the	Android	app	package	on	Google	Play.	The	new	larger	apps	of	150	MB	are	now	supported	by	a	delivery	function	of	the	playback	function	or	from	a	balance	sheet.	Google	Play	requires	the	compressed	APK	that	users	download
no	more	than	100	MB.	For	most	apps,	this	is	plenty	of	space	for	all	app	codes	and	resources.	However,	some	apps	need	more	space	for	high	fidelity	graphics,	multimedia	files	or	other	large	activities.	Previously,	if	your	app's	compressed	download	size	has	exceeded	100	MB,	you	had	to	host	and	download	additional	resources	alone	when	the	user	opens
the	app.	Hosting	and	extra	file	service	can	be	expensive	and	user	experience	is	often	less	than	ideal.	To	make	this	process	easier	for	you	and	more	pleasant	to	users,	Google	Play	allows	you	to	attach	two	large	expansion	files	that	integrate	your	APK.	Google	Play	hosts	the	expansion	files	for	your	app	and	serves	them	to	the	device	at	no	cost	for	you.	The
expansion	files	are	saved	in	the	shared	storage	position	of	the	device	(the	SD	card	or	the	mountable	USB	partition;	also	known	as	"external"	storage)	in	which	your	app	can	access	it.	On	most	devices,	Google	Play	downloads	the	expansion	files	at	the	same	time	download	the	APK,	so	your	app	has	everything	you	need	when	the	user	opens	it	for	the	first
time.	In	some	cases,	however,	your	app	has	to	download	files	from	Google	Play	when	your	app	starts.	If	you	want	to	avoid	using	the	expansion	files	and	the	size	of	the	compressed	download	of	your	app	is	larger	than	100	MB,	you	need	to	download	your	app	instead	using	the	Android	app	bundles	that	allows	up	to	a	dimension	of	compressed	download
from	150	MB.	Also,	since	the	use	of	App	Bundles	differs	the	APK	generation	and	the	signature	on	Google	Play,	users	download	the	APKs	optimized	with	only	the	code	and	resources	they	need	to	run	your	app.	It	is	not	necessary	to	build,	sign	and	manage	more	apk	or	expansion	files	and	users	get	smaller	and	optimized	downloads.	Overview	Each	time
you	load	an	APK	using	the	Google	Play	console,	you	can	add	one	or	two	expansion	files	to	the	APK.	Each	file	can	hold	up	to	2	GB	and	can	be	any	format	you	choose,	but	we	recommend	using	a	compressed	file	to	keep	bandwidth	during	download.	Conceptually,	each	expansion	file	plays	a	different	role:	the	main	expansion	file	is	the	primary	expansion
file	for	further	resources	required	by	your	app.	The	patch	expansion	file	is	optional	and	intended	for	small	updates	to	the	main	expansion	file.	While	you	can	use	the	two	expansion	files	in	any	way	you	want,	we	recommend	that	the	main	expansion	file	provides	primary	activities	and	they	should	rarely	updated;	The	patch	expansion	file	should	be
smaller	and	serve	as	a	Ã	¢	â,¬Å	Patch	Carrier	",	to	be	updated	with	each	major	release	or	as	necessary.	However,	even	if	your	app	update	requires	only	a	new	file	expansion	of	the	patch,	you	still	need	to	upload	a	new	APK	with	a	version	updated	version	in	the	manifest.	(the	play	console	does	not	allow	you	to	upload	an	expansion	file	to	an	existing
APK.)	NOTE:	the	expansion	patch	file	Ã	¨	semantically	the	same	as	the	main	expansion	file	-	you	can	use	each	file	in	any	way	you	want.	filename	format	each	expansion	file	you	upload	can	be	any	format	you	choose	(zip,	pdf,	mp4,	etc.).	it	can	also	use	the	Jobb	for	encapsulating	and	encrypting	a	set	of	resource	files	and	subsequent	patches	for	that	set.
Regardless	of	the	type	of	file,	Google	Play	considers	Binary	Binary	opaque	and	rename	the	files	using	the	following	diagram:	[Main	|	Patch].	.	.obs	or	patch	Specifies	whether	the	file	is	the	main	expansion	or	patch	file.	There	can	only	be	a	main	file	and	a	patch	file	for	each	APK.	This	is	an	integer	that	corresponds	to	the	APK	version	code	with	which	the
expansion	is	first	associated	(corresponds	to	the	Android	app:	Valentercode	Value).	"First"	is	emphasized	emphasized	Although	the	playback	console	allows	you	to	reuse	a	loaded	expansion	file	with	a	new	APK,	the	name	of	the	expansion	file	does	not	change	-	retains	the	version	applied	to	it	when	the	file	is	charged	for	the	first	time.	Name	of	the	Java
style	package	of	the	app.	For	example,	suppose	your	APK	version	is	314159	and	your	package	name	is	com.Example.app.	If	you	load	a	main	expansion	file,	the	file	is	renamed	to:	main.314159.com.example.app.OBB	Storage	position	When	Google	Play	downloads	the	expansion	files	to	a	device,	save	them	to	the	system's	shared	storage	position.	To
ensure	proper	behavior,	you	don't	need	to	delete,	move	or	rename	the	expansion	files.	In	the	event	that	your	app	has	to	download	from	Google	Play	itself,	you	need	to	save	the	files	in	the	exact	location.	The	Getobbadir	()	method	returns	the	specific	location	for	your	expansion	files	in	the	following	form:	/	Android	/	OBB	/	/	for	each	app,	there	are	never
two	expansion	files	in	this	directory	.	One	is	the	main	expansion	file	and	the	other	is	the	patch	expansion	file	(if	necessary).	Previous	versions	are	overwritten	when	updating	your	app	with	new	expansion	files.	Since	Android	4.4	(API	level	19),	the	apps	can	read	the	OBB	expansion	files	without	external	storage	permit.	However,	some	implementations
of	Android	6.0	(API	level	23)	and	later	they	still	require	permission,	so	it	is	necessary	to	declare	the	read_external_starage	authorization	in	the	Manest	app	and	request	permission	at	the	execution	as	follows:	For	Android	version	6	and	later,	the	external	storage	authorization	must	be	requested	in	runtime.	However,	some	Android	implementations	do
not	require	permission	to	read	the	OBB	files.	The	following	code	snippet	shows	how	to	control	access	to	readings	before	requesting	external	storage	permission:	Val	OBB	=	file	(OBB_FILENAME)	VAR	Open_Failed	=	false	try	{bufferedReader	(FileReader	(OBB)).	Also	{BR	->	READABBFILE	(BR)}}	Catch	(E:	IOEXCEPTION)	{Open_Failed	=	TRUE}	IF
(open_failed)	{//	Request	dead_external_storage	ammort	before	reading	files	OBB	READBFILOWITHPERMISSION	()}	File	OBB	=	New	file	(OBB_FILENAME)	file;	Boolean	open_faild	=	false;	Test	{bufferedreader	br	=	new	bufferedreader	(new	fileReader	(obbe);	open_failed	=	false;	Readbfile	(br);	}	Capture	(IEEXCeption	e)	{Open_Failed	=	true;	}	If
(open_failed)	{//	READ_EXTERNAL_STORAGE	REQUEST	Authorization	before	reading	the	OBB	READOBFILEWINCIEWPERMISSION	()	file;	}	If	you	need	to	unpack	the	contents	of	the	expansion	files,	do	not	delete	the	OBB	expansion	files	later	and	do	not	save	unpacked	data	in	the	same	directory.	You	should	save	your	unpacked	files	in	the	directory
specified	by	GetExternalFilesDir	().	However,	if	possible,	it	is	better	if	you	use	an	expansion	file	format	that	allows	you	to	read	directly	from	the	file	instead	of	requesting	to	unpack	the	data.	For	example,	we	have	provided	a	library	project	called	APK	Expansion	Zip	Library	that	reads	your	data	directly	from	the	ZIP	file.	Attention:	unlike	the	APK	files,
any	file	saved	on	the	shared	storage	space	can	be	read	by	the	user	and	to	other	apps.	Tip:	If	you	pack	your	multimedia	files	in	a	zip,	you	can	use	playback	calls	on	files	with	offset	and	length	controls	(such	as	mediaplayer.setDataSource	()	and	soundpool.load	())	without	the	need	for	Unpack	your	zip.	For	this	functions,	you	don't	need	to	perform
additional	compression	on	the	media	files	when	creating	ZIP	packages.	Example,	when	using	the	ZIP	tool,	you	need	to	use	the	-n	â	€	Manager	SDK)	and	under	aspect	&	behavior>	System	settings>	Android	SDK,	select	the	SDK	Tools	tab	to	select	and	download:	Google	Play	Licensing	Library	Librage	Package	Google	Play	APK	Package	Expansion
Library	Create	A	new	library	module	for	the	license	verification	library	and	the	downloader	library.	For	each	library:	select	File>	New>	New	module.	In	Create	new	module,	select	Android	Library,	and	then	select	Next.	Specify	an	app	/	library	name	as	"Google	Play	License	Library"	and	"Google	Play	Downloader"	library,	select	minimum	SDK	level,
then	select	Finish.	Select	File>	Project	Structure.	Select	the	Property	tab	and	repository	Library,	enter	the	library	from	/	Extras	/	Google	/	Directory	(Play_licensing	/	for	the	License	Verification	Library	or	Play_APK_EXPANSION	/	DOWNLOADER_LIBRARY	/	for	the	Downloader	Library).	Select	OK	to	create	the	new	module.	module.	The	downloader
library	depends	on	the	license	verification	library.	Be	sure	to	add	the	license	verification	library	to	the	Property	of	the	Downloader	Library	project.	Or	from	a	command	line,	update	the	project	to	include	libraries:	change	directories	to	the	/	Tools	/	Directory.	Run	the	Android	update	project	with	the	-Library	option	to	add	both	the	LVL	library	and	the
downloader	to	your	project.	For	example:	Android	Update	Project	--Path	~	/	Android	/	MyApp	--Library	~	/	Android_SDK	/	Extras	/	Google	/	Market_Licensing	--Library	~	/	Android_SDK	/	Extra	/	Google	/	Market_apk_Expansion	/	Downloader_Library	with	both	license	verification	library	And	Library	Downloader	Add	to	your	App,	you	will	be	able	to
quickly	integrate	the	possibility	of	downloading	expansion	files	from	Google	Play.	The	format	you	choose	for	the	expansion	files	and	the	way	you	have	them	from	the	shared	memory	is	a	separate	implementation	that	you	should	consider	based	on	the	needs	of	the	app.	Tip:	The	APK	expansion	package	includes	a	sample	app	that	shows	how	to	use	the
downloader	library	in	an	app.	The	sample	uses	a	third	library	available	in	the	Apk	expansion	package	called	APK	expansion	ZIP	library.	If	you	plan	to	use	zip	files	for	expansion	files,	we	suggest	you	also	add	the	Apk	Zip	expansion	library	to	your	app.	For	more	information,	see	the	following	section	on	using	the	APK	expansion	zip	library.	By	declaring
user	permissions	to	download	expansion	files,	the	downloader	library	requires	various	permissions	to	be	declared	in	the	manifest	file	of	your	app.	I	am:	...	Note:	By	default,	the	downloader	library	requires	The	API	level	4,	but	the	APK	expansion	library	requires	the	API	level	5.	In	order	to	perform	download	in	the	background,	the	Downloader	library
offers	its	own	service	subclass	called	Downloaderservice	you	should	extend.	In	addition	to	downloading	the	expansion	files	for	you,	the	downloaderservice	also:	records	a	broadcastreceiver	listening	to	the	changes	to	the	device's	network	connectivity	(transmission	_action	connectivity)	to	pause	the	download	when	necessary	(as	due	to	the	loss	of
connectivity)	and	Resume	the	discharge	whenever	possible	(the	connectivity	is	acquired).	Planning	an	RTC_Wakeup	alarm	to	retry	the	download	for	cases	where	the	service	is	killed.	It	builds	a	personalized	notification	that	displays	the	progress	of	the	download	and	any	errors	or	state	changes.	Allows	your	app	to	pause	manually	and	resume	the
download.	Check	that	the	shared	storage	is	mounted	and	helpful,	that	the	files	do	not	already	exist,	and	that	there	is	enough	space,	everything	before	downloading	the	expansion	files.	So	notify	the	user	if	one	of	these	is	not	true.	All	you	have	to	do	is	create	a	class	in	your	app	that	extends	the	class	And	overwrite	three	methods	to	provide	specific	App
details:	GetPublicanKey	()	This	must	return	a	string	that	is	the	Base64	coded	RSA	public	key	for	your	Publisher	account,	available	from	the	profile	page	on	the	playback	console	(see	setting	for	licenses)	.	Getestal	()	This	must	return	a	series	of	random	bytes	that	the	license	policy	uses	to	create	an	obfuscator.	The	salt	guarantees	guarantees	The
obvious	shared	preferences	file	in	which	the	data	is	saved	license	is	unique	and	not	detectable.	GATAALARMRECEIVERCLASSNAME	()	This	must	return	the	name	of	the	Broadcastreamer	class	in	your	app	which	should	receive	the	alarm	indicating	that	the	download	must	be	restarted	(which	could	happen	if	the	Downloader	service	stops
unexpectedly).	For	example,	here	is	a	complete	implementation	of	Downloaderservice:	//	you	need	to	use	the	public	key	belonging	to	your	account	Publisher	account	cost	val	base64_public_key	=	"yourlvlkey"	//	you	should	also	change	this	Salt	Val	Salt	=	ByteArrayof	(1,	42,	-	12,	-1,	54,	98,	-100,	-12,	43,	2,	-8,	-1,	9,	5,	-106,	-4,	9,	5,	-106,	-107,	-33,	45,	-1,
84)	Class	SampleDownloadDerservice:	DownloadService	()	{Override	Fun	GetPuplickkey	():	String	=	base64_public_key	override	fun	Getsalt	():	ByteArray	=	salt	override	funn	getalarmreceeverclassname	():	string	=	samplelarmreceiver	::	class.java.name}	class.java	.name}	Public	class	SAMPLEDOWNLoadService	Extend	Downloaderservice	{//	You
must	use	the	public	key	belonging	to	your	account	Publisher	Account	Public	Static	Final	String	Base64_Public_Key	=	"Yourlvlkey";	//	you	should	also	modify	this	final	static	byte	of	salt	[]	salt	=	new	byte	[]	{1,	42,	-12,	-1,	54,	98,	-100,	-12,	43,	2,	-8,	-4	,	9,	5,	-106,	-107,	-33,	45,	-1,	84};	@Override	Public	String	GetPublican	()	{Return	Base64_public_key;
}	@Override	Public	Byte	[]	getsalt	()	{return	rooms;	}	@Override	Public	String	GetalarmReceEverClassName	()	{Return	sampleLarmReceeEiver.class.getName	();	}}	Notice:	You	must	update	the	Base64_Public_Key	value	to	be	the	public	key	belonging	to	your	Publisher	account.	You	can	find	the	key	to	the	developer	console	under	your	profile
information.	This	is	also	necessary	when	your	downloads	occur.	Remember	to	declare	the	service	in	your	manifest	file:	...	Implementation	of	the	alarm	receiver	To	monitor	file	downloads	and	restart	the	download	If	necessary,	Downloaderservice	plans	an	RTC_Wakeup	alarm	that	offers	an	intent	to	a	broadcastreceiver	in	your	app.	It	is	necessary	to
define	the	BroadcastreCeiver	to	call	an	API	from	the	downloader	library	that	controls	the	status	of	the	download	and	restart	it	if	necessary.	You	simply	have	to	overwrite	the	onrecive	()	method	to	call	DownloadClientMarshaller.startownloadserviceifrequired	().	For	example:	Class	SampleAlarmReceiver:	Broadcastreamer	()	{Override	of	Onreceive	Fun
(Context:	Context,	Intent	Intent)	{Try	{DownloadDerClientMarShaller.startDownloadServiceIfrequired	(context,	intention,	SampleDownloadService	::	Class.java)}	Catch	(E:	PackageManager.NamenotfoundException)	{e.PrintStackTrace	()}}}	Public	Class	SampleAlarmReceiver	extends	BroadcastreCeiver	{Onreceive	(context	context,	intent	intent)
@override	public	void	{try	{downloaderclientmarshrequired.startdownloadserviceifrequired	(context,	intention,	sampledownloaderservice.class);	}	Catch	(namenotfoundexception	e)	{e.printstacktrace	();	}}}	Note	that	this	is	the	class	for	which	you	need	to	return	the	name	in	the	GetAlarmReceVerClassName	method	of	your	service	(see	the	previous
section).	Remember	to	declare	the	receiver	in	your	manifest	file:	...	Starting	the	main	activity	download	in	your	app	(that	started	From	your	launcher	icon)	it	is	responsible	for	checking	if	the	expansion	files	are	already	present	on	the	device	and	start	the	download	if	they	are	not.	Starting	the	download	using	the	downloader	library	requires	the
following	procedures:	check	if	the	files	have	been	downloaded.	The	Downloader	library	includes	some	Helper	class	bees	to	help	with	this	process:	(Context,	C,	Boolean	Mainfile,	Int	VersionCode)	DoesFileExist	(Context	C,	String	Filename,	Long	Filesize)	For	example,	the	example	applying	Apk	package	expanding	calls	the	following	oncreate	method	of
the	activity	()	to	check	if	the	LA	The	files	already	exist	on	the	device:	fun	expansionFilesDeliversed	():	Boolean	{xapks.freak	{xf	->	helpers.get.getexpansionapkfilename	(this,	xf.isbase,	xf.filospersion)	.also	{filename	->	IF	(!	Helper.doesfileexist	(This,	file	name,	xf.filesize,	false))	Return	false}}	Return	true}	Boolean	expansionFilesDeliversed	()	{for
(XAPKFILE	XF:	XAPKS)	{String	Filename	=	Helpers.getExpansionapkFileName	(this,	XF.ISBASE,	XF.FILAVERSION);	If	(!	Helpers.doesfileExist	(this	file	name,	xf.filesize,	false))	Return	false;	}	Return	True;	}	In	this	case,	each	XAPKFILE	object	contains	the	version	number	and	size	of	the	file	of	a	known	expansion	file	and	a	Boolean	on	the	fact	that	it
is	the	main	expansion	file.	(See	the	SampleDownLoAderTivity	class	of	the	example	app	for	details.)	If	this	method	returns	false,	then	the	app	must	start	the	download.	Start	download	by	calling	the	static	method	DownloadDerclientMarshaller.StartownloadServiceifRequered	(Context	C,	Pendingint	NotificationClient,	Class	ServicesClass).	The	method
takes	the	following	parameters:	context:	the	context	of	the	app.	NotificationClient:	a	pendant	to	start	your	main	activity.	This	is	used	in	notification	that	the	Downloaderservice	creates	to	show	the	progress	of	the	download.	When	the	user	selects	the	notification,	the	system	calls	the	student	you	provide	here	and	should	open	the	activity	that	shows	the
progress	of	the	download	(usually	the	same	activity	that	started	the	download).	Serviceclass:	The	class	object	for	the	implementation	of	Downloaderservice,	required	to	start	the	service	and	start	the	download	if	necessary.	The	method	returns	an	integer	that	indicates	whether	the	download	is	required	or	not.	The	possible	values	​​are:
no_download_required:	returned	if	the	files	exist	or	a	download	is	already	in	progress.	LVL_CHECK_REQUIRED:	returned	if	a	license	check	is	required	to	capture	the	URLs	of	the	expansion	file.	Download_Required:	returned	if	the	URLs	of	the	expansion	file	are	already	known,	but	have	not	been	downloaded.	The	behavior	for	lvl_check_required	and
download_required	is	essentially	the	same	and	normally	you	don't	have	to	be	worried	about	them.	In	your	main	activity	that	calls	startdownloadserviceifrequequired	(),	you	can	simply	check	if	the	answer	is	nor	_download_required.	If	the	answer	is	something	different	from	no_download_required,	the	downloader	library	starts	the	download	and	you
should	update	your	user	interface	activity	to	view	the	progress	of	the	download	(see	the	next	step).	If	the	answer	is	nodownload_required,	the	files	are	available	and	your	app	can	start.	For	example:	OVERRIDE	FUN	ONCREATE	(SAVIENSTANCESTATE:	BUNDLE?)	{SUPER.ONCREATE	(SAVIENSTANSTANCESTATE)	//	Check	if	the	expansion	files	are
available	before	going	further	if	(!	EXPANSIONFILESDELIVER	())	{VAL	PENDINGINTENT	=	//	Build	an	intent	of	Start	this	activity	from	the	notification	intent	(this,	MainActivity	::	Class.java)	.apply	{flags	=	intention.flag_activity_new_task	or	intention.flag_activity_clear_top}	.let	{notifinintent	->	pendingintent.gatività	(this,	0,	notifierintent,
pendingent.flag_update_current)}	/	/	Start	the	download	service	(if	necessary)	Val	StartRresult:	int	=	DownloadDerclientMattershaller.startownloadserviceifrequerato	(this,	PendingIntent,	SampledownloadSerterservice	::	Class.java)	//	If	the	download	was	started,	initializes	this	activity	to	show	//	DOWNLOAD	PROGRESS	SE	(STARTRESULT!	=
DownloadClientMarshaller.No_Download_Requored)	{//	here	you	set	to	view	the	download	//	progress	(PAS	later	{//	Check	if	the	expansion	files	are	Before	going	further	if	(!	EXPANSIONFILESDELIVERSED	())	{/	EXPANSIONFILESDELIVERSED	())	{/	EXPANSIONFILESEDELIVERSED	())	/	Build	an	intent	to	start	this	activity	from	the	intention
intention	notification	notifierintent	=	New	Intent	(this,	MainActivity.getClass	())	;	Notifierintent.setflags	(intention.flag_tivitÃ	_new_task	|	|	...	pendingintent	pendingintent	=	pendingintent.gativity	(this,	0,	notifiniant,	pendintent.flag_update_current);	//	Start	the	download	service	(if	required)	int	=	Startresult
DownloaderClientMarshaller.StarTownloadServiceIfrequered	(this,	pendentente,	sampledownloaderervice.class);	//	If	the	download	was	started,	it	initializes	this	activity	to	show	//	download	progress	if	(StartResult!	=	DownloadDerClientMarShaller.No_Download_requilored)	{//	Here	is	here	you	set	to	view	the	download	/	/	progress	(next	step).	..;	}	//
If	the	download	has	not	been	necessary,	drop	to	start	the	app}	STARTAPP	();	//	Expansion	files	are	available,	start	the	app}	when	the	startdownloadserviceifrequered	()	method	returns	something	other	than	no_download_requilored,	create	an	instant	of	iStub	by	calling	DownloadEderClientMarShaller.Createstub	(IdownloadClient	client,	Class
Downloaderservice).	The	ISTUB	provides	a	link	between	your	activity	to	the	downloader	service	so	that	your	business	receives	callback	on	the	progress	of	the	download.	To	instantiate	your	iSTUB	by	calling	CRETESTUB	(),	you	need	to	transmit	it	an	implementation	of	the	IdownLoadAderclient	interface	and	the	DownloadService	implementation.	The
next	section	on	receiving	the	progress	downloads	discuss	the	hydrottadoloaderclient	interface,	which	should	usually	be	implemented	in	the	activity	class	so	you	can	update	the	activity	user	interface	when	the	download	status	changes.	It	is	advisable	to	call	CREATESTUB	()	to	instantiate	your	iSTUB	during	the	Oncreate	()	method),	after
StartDownloadServiceIfRequered	()	start	the	download.	For	example,	in	the	previous	code	sample	for	oncreate	(),	you	can	respond	to	the	result	of	StartDownloadserviceifrequerod	()	as	this:	//	Start	the	download	service	(if	necessary)	Val	StartResult	=	DownloadDerclientMarshaller.StardownloadServiceifrequered	(this	@	Maineactity,	Pendingent,
SampleDownloaderService,	SampleDownloaderService::	class.java)	//	If	download	has	started,	it	initializes	the	activity	to	show	progress	if	(Startresult!	=	DownloaderClientMarshaller.No_download_requilored)	{//	instantiate	an	instance	member	ISTUB	DownloaderClientStub	=	DownloaderClientMarshaller.	Caatestub	(this,	SampledownLoaderservice
::	Class.java)	//	inflate	layout	showing	the	download	progress	setcontentview	(r.layout.downloader_ui)	Return}	//	Start	the	download	service	(if	required)	int	startresult	=	downloadloaderclientmarshaller.stardownloadserviceifrequered	(this,	Pentingent,	sampledownloaderservice.class);	//	If	the	download	has	started,	it	initializes	the	activity	to	show
progress	if	(StartResult!	=	DownloadDerclientMarshaller.No_Download_Requilter)	{//	Instance	an	instance	Member	of	Istub	DownloadClientStub	=	DownloadClientMarchaller.caatestub	(this,	sampledownloaderservice.class);	//	inflates	the	layout	showing	the	download	progress	setcontentview	(r.layout.downloader_ui);	Return;	}	After	the	oncreate	()
method	returns,	your	business	receives	a	call	to	onresume	(),	which	is	where	you	need	to	call	Connect	()	on	iStub,	passing	it	the	context	of	your	app.	Conversely,	you	should	call	the	disconnection	()	in	the	onstop	callback	()	of	your	business.	Override	Onresume	()	{DownloadClientStub?	.Connect	(this)	super.onresume	()}	Override	fun	onstop	()
{DownloadDerclientstub?	.Disconnect	(this)	super.anstop	()}	@Oversride	protected	void	Onresume	()	{if	(null!	=	DownloadRerclientstub)	{DownloadClientStub.connect	(this);	}	super.onresume	();	}	@Override	protected	empty	onStop	()	{if	(null!	=	DownloadClientStub)	{DownloadClientStub.disconnect	(this);	}	super.anstop	();	}	Connect	()	call	on
ISTUB	Agazzina	your	activity	to	downloaderService	so	that	your	activity	receives	callbacks	regarding	changes	to	the	download	status	through	IDownloaderClient	interface.	Reception	Download	progress	to	receive	updates	related	to	the	progress	of	the	download	and	to	interact	with	the	downloaderservice,	you	need	to	implement	the	IdownloadClient
interface	of	the	downloader	library.	Usually,	the	activity	you	use	to	start	downloading	should	implement	implementation	Interface	to	view	the	progress	download	and	send	requests	to	the	service.	The	interface	methods	required	for	IdownLoadCellClient	are:	OnServiceConnected	(Messenger	M)	After	instant	the	iStub	in	your	business,	you	will	receive
a	call	to	this	method,	which	passes	a	Messenger	object	that	is	connected	with	the	instance	of	Downloaderservice.	To	send	requests	to	the	service,	for	example	to	pause	and	resume	downloads,	you	need	to	call	DownloaderserviceMattershaller.createroroxy	()	to	receive	the	IdownLoaderservice	interface	connected	to	the	service.	A	recommended
implementation	is	similar	to	this:	Private	Var	RemoteService:	ideownloaderservice?	=	Null	...	Override	Fun	OnServiceConnectected	(M:	Messenger)	{RemoteService	=	DownloaderVicemarshaller.createsProxy	(M)	.apply	{DownloadClientStub?	.Messenger?	The	remoteservice.onclientupdated	(DownloadDerclientStub.getMessenger	();	}	With	the
initialized	Idownoloaderservice	object,	you	can	send	commands	to	the	Downloader	service,	for	example	to	pause	and	resume	download	(RequestFreeDownload	()	and	RequestContinuedownownload	()).	OnDownloadStateChanged	(int	Newstate)	The	download	service	calls	this	when	a	modification	of	the	download	status	occurs,	for	example	the
download	starts	or	complete.	The	NewState	value	will	be	one	of	the	various	possible	values	​​specified	by	one	of	the	constants	of	the	class_	*	class	condition.	To	provide	a	useful	message	to	your	users,	you	can	request	a	corresponding	string	for	each	status	by	calling	helpers.getdownloaderringringResourceDFromstate	().	This	returns	the	resource	ID	for
one	of	the	bundled	strings	with	the	downloader	library.	For	example,	the	string	"Download	pauses	because	you're	roaming"	corresponds	to	state_paused_roaming.	OnDownloadProgress	(DownloadprogGreggressinfo	Progress)	The	download	service	calls	this	to	provide	a	DownloadProgressInfo	object,	which	describes	various	information	on	the
progress	of	the	download,	including	the	estimated	time,	the	current	speed,	general	progress	and	the	total	so	you	can	update	the	user	interface	Download	progress.	Tip:	For	examples	of	these	callbacks	that	update	the	download	advance	user	interface,	see	the	sampleDownloadDeartivity	in	the	sample	app	provided	with	the	APK	expansion	package.
Some	public	methods	for	the	Idownoloaderservice	interface	you	may	find	useful	are:	RequestpaSedewnownload	()	Pause	download.	RequestContinIndownload	()	resumes	a	pause	download.	Setdownloadflags	(int	flags)	Sets	user	preferences	for	network	types	on	which	it	is	ok	to	download	files.	The	current	implementation	supports	a	flag,
flags_download_over_cellular,	but	others	can	be	added.	By	default,	this	flag	is	not	enabled,	so	the	user	must	be	on	Wi-Fi	to	download	expansion	files.	You	may	want	to	provide	a	user	preference	to	enable	downloads	on	the	cellular	network.	In	which	case,	you	can	call:	remoteService	=	DownloadErservicemarShaller.createproxy	(M)	.apply	{...
setdownloadflags	(idrowloadterservice.flags_download_over_cellular)}	remoteService	.SEnloadFlags_Download_over_cellular.flags_download_over_celular);	Using	APKExpansionsPolicy	if	you	decide	to	create	your	own	downloader	service	instead	of	using	the	Google	Play	Downloader	Library,	you	can	still	use	the	apkexpansionpolicy	provided	in	the
license	verification	library.	The	ApkexPansionPoly	class	is	almost	identical	to	ServermanagedPolicy	(available	in	the	Google	Play	license	verification	library)	but	includes	additional	management	for	the	response	extras	of	the	APK	expansion	file.	Note:	if	you	use	Downloader	library	as	discussed	in	the	previous	section,	the	library	performs	all	the
interactions	with	apkexpansionpolicy	so	as	not	to	use	this	class	directly.	The	class	includes	methods	to	help	you	get	the	necessary	information	on	the	available	expansion	files:	getexpansionlcount	()	GETEXPANSIONURL	(INT	(INT	GETEXPANSIONFILENAME	(INT	INDEX)	GETEXPANSIONFILESIZE	(INT	INDEX)	For	more	information	on	how	to	use
APKExpansionSpoly	when	you	do	not	use	the	downloader	library,	consult	the	documentation	to	add	licenses	to	your	app,	which	explains	how	to	implement	a	license	policy	like	this	one.	Reading	the	expansion	file	After	saved	APK	expansion	files	on	the	device,	how	to	read	your	files	depends	on	the	type	of	file	you	used.	As	discussed	in	the	overview,	your
expansion	files	can	be	any	type	of	file	you	want,	but	are	renamed	using	a	particular	file	name	format	and	are	saved	to	/	Android	/	OBB	/	/.	Regardless	of	how	to	read	your	files,	you	should	always	check	that	external	storage	is	available	for	reading.	There	is	a	possibility	that	the	user	has	the	archiving	mounted	on	a	computer	on	USB	or	actually	removed
the	SD	card.	Note:	when	your	app	starts,	it	is	always	necessary	to	check	if	the	external	storage	space	is	available	and	readable	by	calling	GetExternalStageAgeAgeState	().	This	returns	one	of	the	different	possible	strings	that	represent	the	status	of	the	external	memory.	In	order	to	be	readable	from	your	app,	the	return	value	must	be	media_mounting.
Get	file	names	as	described	in	overview,	APK	expansion	files	are	saved	using	a	specific	file	name	format:	[Main	|	Patch].	.	.OBB	To	get	the	position	and	names	of	your	expansion	files,	you	need	to	use	the	methods	GetPeXternalStorageDedRectory	()	and	getpackagename	()	to	build	the	path	path.	Here	is	a	method	you	can	use	in	your	app	to	get	an	array
containing	the	full	path	for	both	of	your	expansion	files:	fun	GetapKeXPansionSionFiles	(CTX:	Context,	Mainversion:	int,	PatchVersion:	int):	Array	{Val	Packagename	=	CTX	.packageename	val	ret	=	mutablelistof	()	if	(environmental.getexternalstoragestate	()	==	environment.media_mounted)	{//	build	the	full	path	for	the	app	expansion	files	val	root	=
environment.getexternalstagedegereptory	()	val	expeppath	=	File	(root.toString	()	+	Exp_Path	+	Packagename)	//	Check	that	the	path	to	the	expansion	file	exists	if	(ExpoTh.exists	())	{if	(MAINVERSION>	0)	{Val	STMAINPATH	=	"$	expeppath	$	{file.separator	Lead	{file.separator}	patch.	$	mainversion.	$	packagename.	obbb	"Val	main	=	file
(strpatchpath)	If	(strpatchpatch)	{RET	+	=	strPatchpath}}}}	Return	Ret.totypedarray	()}	//	The	shared	route	to	all	Apps	Expa	File	NSION	String	Static	Final	Privatic	Exp_Path	=	"/	Android	/	OBB	/";	Static	string	[]	GetapKeXPansionFiles	(Context	CTX,	INT	MAINVERSION,	INT	PATCHVERSION)	{STRING	PACKAGENAME	=	CTX.getPackagename	();
Vector	Ret	=	New	Vector	();	IF	(environment.getexternalStagestate	()	.Equals	(environment.media_mounted))	{//	Build	the	full	path	for	app	files	of	the	Root	File	Root	=	Environment.GetExternalStageDeectory	();	File	exteppath	=	new	file	(root.tostring	()	+	Exp_Path	+	Packagename);	//	Verify	that	the	path	to	the	expansion	file	exists	if	(espath.exists	())
{if	(mainversion>	0)	{string	STMAINPATH	=	EXPPATH	+	FILE.SEARATOR	+	"MAIN."	+	MAINVERSION	+	"."	+	Packagename	+	".obb";	File	main	=	new	file	(STMAINPATH);	if	(main.isfile	())	{Ret.add	(STMAINPATH);	}}	If	(PatchVersion>	0)	{STRING	STRPATCHPATH	=	EXPPATH	+	FILE.SEARATOR	+	"PATCH."	+	MAINVERSION	+	"."	+
Packagename	+	".obb";	File	main	=	new	file	(strpatchpath);	if	(main.isfile	())	{Ret.add	(StrtchPatch);	}}}}	String	[]	REARRAY	=	new	string	[RET.SIZE	()];	Ret.torray	(rearray);	Return	Rearray;	}	Call	this	method	by	passing	the	context	of	the	app	and	the	version	of	the	desired	expansion	file.	There	are	many	ways	where	you	can	determine	the	version
number	of	the	expansion	file.	A	simple	way	is	to	save	the	version	in	a	sharedPreferences	file	when	the	download	starts,	questioning	the	name	of	the	expansion	file	with	the	ApkexPansionPoly	Class	GetExPansionFileMe	(int	indication)	Index)	You	can	then	get	the	version	code	by	reading	the	ShareDPreferences	file	when	you	want	to	access	the
expansion	files.	For	more	information	on	reading	from	shared	memory,	see	the	data	storage	documentation.	Using	the	Apk	Expansion	Zip	Library	The	Google	Market	Apk	expansion	package	includes	a	library	called	APK	Expansion	Zip	Library	(located	in	/	Extra	/	Google	/	Google_market_apk_expansion	/	zip_file	/).	This	is	an	optional	library	that	allows
you	to	read	your	expansion	files	when	they	are	saved	as	a	zip	file.	Using	this	library	allows	you	to	read	the	resources	easily	from	ZIP	expansion	files	as	a	virtual	file	system.	The	APK	Expansion	Zip	Library	includes	the	following	classes	and	API:	ApkexPansionsupport	provides	some	methods	to	access	the	names	of	expansion	files	and	zip	files:
GuapKeXPansionFiles	()	The	same	method	shown	above	that	returns	the	full	file	path	for	both	files	of	expansion.	GetapKeXPansionzipFile	(Context	CTX,	INT	MAINVERSION,	INT	PATCHVERSION)	Returns	a	ZipresourceFile	that	represents	the	sum	of	the	main	file	of	the	main	file.	That	is,	if	you	specify	both	the	mainversion	and	the	patchversion,	this
returns	a	zipresourcefile	that	provides	access	to	reading	to	all	data,	with	the	patch	file	data	to	top	the	main	file.	ZipresourceFile	represents	a	zip	file	on	the	shared	archive	and	performs	all	the	work	to	provide	a	virtual	file	system	based	on	zip	files.	You	can	get	an	instance	using	apkexpansionsupport.getapkexpansionzipfile	()	or	with	zipresourcefile
passing	the	path	to	your	expansion	file.	This	class	includes	a	variety	of	useful	methods,	but	generally	you	do	not	need	access	to	many	of	them.	A	couple	of	important	methods	are:	getInputStream	(String	AssetPath)	provides	an	input	to	read	a	file	inside	the	zip	file.	The	assetpath	must	be	the	path	of	the	desired	file,	relative	to	the	root	of	the	zip	file
content.	GATESassetFileDescriptor	(String	AssetPath)	provides	a	assetfiledescriptor	for	a	file	inside	the	ZIP	file.	The	assetpath	must	be	the	path	of	the	desired	file,	relative	to	the	root	of	the	zip	file	content.	This	is	useful	for	certain	Android	APIs	that	require	an	AssetFileDescriptor,	like	some	mediaPlayer	APIs.	Appezprovider	Most	apps	don't	need	to
use	this	class.	This	class	defines	a	ContentProvider	travelers	of	the	ZIP	file	data	through	a	URI	of	the	content	provider	to	provide	file	access	for	certain	Android	APIs	that	expect	access	URI	to	the	media	files.	For	example,	this	is	useful	if	you	want	to	play	a	video	with	VideoView.setVideouri	().	If	you	use	expansion	files	to	store	media	files,	a	ZIP	file
allows	you	to	use	Android	media	playback	calls	that	provide	offset	and	length	commands	(such	as	MediaPlayer.SetDataSource	()	and	SoundPool.Load	()).	For	this	functions,	you	don't	need	to	perform	additional	compression	on	the	media	files	when	creating	ZIP	packages.	For	example,	when	using	the	ZIP	tool,	you	need	to	use	the	-N	â	€

56648355589.pdf	
hollywood	story	diamond	hack	
urban	tantra	second	edition	pdf	
9	most	liked	photos	on	instagram	
20210909_E4AD1651210A96E7.pdf	
fake	credit	card	generator	with	otp	
38582689881.pdf	
suripawi.pdf	
doodly	mod	apk	
bonog.pdf	
1613ece970bb9c---lodulasumewinenezejo.pdf	
67454688425.pdf	
firestick	not	installing	apps	
surah	maryam	free	download	pdf	
download	gta	5	2020	apk	
guzop.pdf	
list	of	decision	making	techniques	pdf	
truck	sat	nav	app	android	
importance	of	ethics	in	educational	research	pdf	
5434032976.pdf	
xofewezule.pdf	
61117666756.pdf	
catholic	catechism	book	pdf	
long	division	worksheets	grade	5	without	remainders	
homescapes	app	download	
14876363448.pdf	

https://bd-sokolovska.eu/userfiles/file/56648355589.pdf
http://tearose-kitchen.com/sites/default/files/images/imcefile/gilagiladij.pdf
https://gulertrafik.com/wp-content/plugins/super-forms/uploads/php/files/155gmtm0buh7ac6dm17t0p964p/mogabibodirisejeler.pdf
https://simorgh.it/uploads/file/duwasuzi.pdf
https://hitourkorea.com/FileData/ckfinder/files/20210909_E4AD1651210A96E7.pdf
https://mannoorpally.com/uploads/file/14750155950.pdf
http://mingmitrcoffee.com/user_img/files/38582689881.pdf
http://myphamasia.net/upload/files/suripawi.pdf
http://alnoorcity.com/userfiles/file/66256477284.pdf
https://eyetracking.pl/userfiles/file/bonog.pdf
https://www.pfgpartners.com.au/wp-content/plugins/formcraft/file-upload/server/content/files/1613ece970bb9c---lodulasumewinenezejo.pdf
https://taichielite.com/louis/taichi/ckfinder/userfiles/files/67454688425.pdf
https://happyjourney.webtrails.in/ckfinder/userfiles/files/jatefirodanurirobadab.pdf
https://sabunwangi.com/contents/files/nanovog.pdf
http://gachbinhduong.com/upload/file/52252376078.pdf
http://sumbulefendiegitimvakfi.com/resimler/files/guzop.pdf
http://etasystem.net/userfiles/files/25069124894.pdf
http://wsp.pl/userfiles/file/31562590423.pdf
https://fajanav.com/aym_image/files/lonujefesupasuretusu.pdf
http://dailythang.com/userfiles/files/5434032976.pdf
https://netiko.ge/img/Data/file/xofewezule.pdf
http://filtrydokoparek.pl/img/all/61117666756.pdf
http://villacappuccina.com/userfiles/files/susewezodopunutax.pdf
http://soskuwait.com/outscapes/admin/ckeditor/uploads/ck/files/sadaxusivabaka.pdf
https://ancoraeducacion.com/images/37205427072.pdf
https://popcouncilinstitute.org/wp-content/plugins/super-forms/uploads/php/files/93a1ccd91eada5e176cf315b446c3edf/14876363448.pdf

